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field: weak turbulence limit 
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Abstract. The problem of thin flame front propagation with curvaturedependent speed in a 
weal turbulent Row has been considered. and i b  connection with classical problem in the 
physics of disordered systems such as polymers in a random medium, growing interfaces and n- 
body interaction problems has been discussed. By a path-integral approach, an explicit formula 
for the randomly moving flame front in terms of the Auctuating velocity field has been derived. 
The steepest-descent approximation has been used to find the random configuration of the flame 
surface in the limit of small Markstein diffusivity. New expressions for the turbulent burning 
velocity (the overal propa&on rate of a flame surface subject to a random velocity field) 
involving the random velocity field along the Lagrangian trajectories have been derived. 

1. Introduction 

In the last few years a flamelet formulation for premixed turbulent combustion has 
amacted considerable attention [1-4]. Under the flamelet assumption, one may describe the 
combustion process in the limiting case in which an infinitely fast chemical reaction leads 
to formation of thin wrinkled flame fronts embedded in the turbulent flow. Of particular 
prominence has been the approach which is based on a nonlinear stochastic differential 
equation (the G-equation) for the scalar GO, z) whose level surface moves normal to itself 
with a laminar burning velocity UL [3,5] 

aG - + ~ ( t ,  2). VG = ULIVG~ 
a t  

where w(f, 2) is the random velocity field. Different techniques, such as numerical 
methods 151, the renormalization-group approach 1671, scaling and dimensional 
analysis [8 ,9 ] ,  and the spectral closure approximation [IO] have been used to study the 
properties of the G-equation. 

The main purpose of this paper is to derive an explicit expression for the flame surface 
position in terms o f a  weak random velocity field and examine the statistical properties 
of the flame front. A specific intention of this work is to derive the formula for the 
turbulent burning velocity and thereby to provide the framework for a study of the parametric 
dependence of the turbulent flame on the statistical characteristics of the prescribed random 
velocity field. There are two technical aspects to this paper. The first deals with the 
derivation of a linear differential equation for the field which is alternative to G(t ,  z), while 
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the second is concerned with the solution of the equation derived in terms of a path integral 
and its asymptotic analysis. 

To the author’s knowledge this work is a first attempt to formulate the problem of 
flame propagation in a random velocity field in terms of a path integral. Although it is 
impossible to evaluate such an integral analytically, a number of results can be obtained by 
considering a steepest-descent asymptotic and a replica method. The potential advantage of 
path integrals is that there exist effective numerical methods to evaluate them directly. 

2. Regularization procedure 

If the laminar burning velocity UL is considered to be a constant, then the Huygens 
development of an initially smooth flame front develops singularities corresponding to the 
infinite curvature. However, if the G-equation (1) governing the propagation of the flame 
surface is modified in a manner that corresponds to the fact that any flame front in a real 
turbulent flow field would not be a pure discontinuity, but would have finite thickness, then 
the occnrence of the cusps can be avoided. Such a regularization procedure may be applied 
considering the effect of flame stretch involving the flame thickness as a characteristic 
length scale. It is worth mentioning that as a physical phenomenon this situation is formally 
similar to that which occurs in a theory for the propagation of high-frequency waves through 
a random inhomogenious medium where focusing phenomena implying large fluctuations 
in wavefront curvature are likely to happen. In this situation, a regularization is usually 
achieved by the parabolic equation approximation [ll]. 

Now let us consider the case in which the flame front has a finite thickness and therefore 
the laminar burning velocity is a function of strain and curvature [12, 131. Under the 
conditions of weak strain and weak curvature, the formula for ILL can be written as follows 

where the Markstein diffusivity DL may be regarded as a regularization parameter and U: 

is the laminar burning velocity for an unstretched flame surface. For further discussion and 
references on this aspect of the flame propagation see the article by Peters [IO]. 

In this paper we restrict ourselves to a relatively simple case of the weak turbulence 
limit when the RMS velocity fluctuations, URMS, is smaller than the laminar burning velocity, 
U:. Then for the combustion wave propagating in the z-direction, one can set [5-71 

GO, 2) = -z + u t i  + ~ ( t ,  T) ~(0, T) = qdr) (3) 
where T = ( x ,  y) specifies the transverse coordinates. Thus the configuration of a fluctuating 
position of the flame front is described, at any instant t ,  by the single-valued function 
~ ( t ,  T) of the transverse vector T. The single-valuedness assumption employed here is 
approximately valid as long as uws << U:. 

Substitution of (3) in equations (1),~(2), after expansion of the square root, yields 

( P a  r) = V d T )  (4) aV 4 - + vr(t, T) * vrp = -(V,vY+ DLv:(P + U&, 7 )  at 2 
where V, = (6, $), v, = (U,, ur ). If u ~ s  << U& the random velocity field can be 
considered as frozen. Therefore, in the frame of reference moving with a laminar burning 
velocity U: the components of the random fluid velocity v may be considered as the functions 
of the transverse vector T and timet. It is clear that the equation (4) is vatid if the magnitude 
of gradient lV,yll is small. Note that the irrelevance of strain may be easily verified by 
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considering the general formula for the laminar burning velocity of a flame submitted to 
stretch [IO, 12.131 in the limit of the small values of IV,ql and DL. 

3. Pathintegral solution 

An essential feature of the nonlinear equation (4) is that it may be converted into a linear 
equation. It is possible by using the transformation [14,15] 

which leads to a linear advection-diffusion equation for *(t ,  T )  

- f 0, . vr0,  T )  @I = DLV;@ + - %(t. T )  f~ 
at  DL 

Here we have used the condition of incompressibility V, . v, = 0. 

(6) a* 4 @(O, 7 )  = * O ( T ) .  

To make fuaher progress, let us introduce the stochastic differential equation 

(7) 
d r ~  
ds - = vJs, T ( S ) )  + C(s) 0 < s < t 

with the boundary conditions 

T(0) =To T ( t )  = T 

where E(s) is a white Gaussian noise vector with zero mean and with a probability density 
functional of the form [I61 

Then the solution of the initial value problem (6) may be represented as a function space 
integral obtained by averaging over random realizations of ~ ( s )  [16,17] 

(10) 

where the integration is performed over all trajectories T ( S )  starting at s = 0 with ~ ( 0 )  = TO 

and arriving at the point T at time I. It should be noted that the solution (IO) is valid for 
any fixed realization of the random velocity field. The weighting factor P[r(s)] may be 
readily found from (7). (9) 

1 t 

$4, T )  = S W t )  - T)exp [& VAS, W )  ds ptr(s)l *O(TO) W s )  

Here J = exp(or J,' V, . v, ds) is the Jacobian corresponding to mapping T(S)  onto 
C(s) [16,17] which is equal to unity for an incompressible fluid. 

It is convenient to use the action functional 

with the Lagrangian L of the form 
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Since the flame position is described by q = ( ~ D L / U ; )  In @, the final result may be 
written as 

The major advantage of this formula is that it gives us an explicit expression for the 
fluctuating flame front q(t, T )  in terms of the random velocity field v(t, T ) .  It should be 
noted that we have introduced no assumption concerning the statistical properties of the 
random velocity field, hence the formula (13) is quite general and can be evaluated further 
if we use explicit statistics of the velocity v(t , T ) .  Before considering this, a specific analogy 
might be helpful in illustrating the ideas and formulas presented so far. If the fluctuating 
velocity field in the transverse direction v, is zero (this assumption is commonly used in 
combustion literature), then the auxiliary field @(t, T )  may be interpreted as the restricted 
partition function of a Gaussian polymer of length t;  the fluctuating position of the flame 
front q(t ,  T )  plays the role of a polymer free energy, while the velocity field in the z- 
direction, uT, has the formal meaning of the random potential. Recently, such a similiarity 
in the context of growing interfaces, directed polymers, etc, has been used successfully [15]. 
In the absence of transverse velocity fluctuations one can take an advantage of the fact that 
equation (4) is completely equivalent to the Kardar-Parisi-Zhang (KPZ) model [14]. 

4. Replica method 

Now let us sketch the algorithm that can be used to investigate the influence of non-zero 
velocity fluctuations transverse to the reaction zone. To illustrate the idea, consider the 
average value of (o over random velocity field 

To perform the average of the logarithm of the ‘partition function’ @ is a classical problem 
in the physics of disordered systems [U]. One way to solve it is a replica method based 
on the identity [19-21] 

where @“ n:=, @ ( t ,  r i )  may be written as a functional integral over n paths q ( s )  

There is, however, a difficulty associated with the fact that for non-zero field w, (which 
appears in quadratic form in (15)) the path integral (13) is not the same as the expression 
for ‘ordinary’ free energy. This problem may be solved through introduction of n auxilliary 
vectors pi = ( p x i ,  p y i )  [22,23] which make the path integral (15) ‘linear’ in v, 
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This expression greatly simplifies obtaining an average value of +“. Let us assume that 
the velocity v is a G~ussian random field of the form [%I 

= (0, U#, x), U&. x)) (17) 

with zero mean and correlation functions given b y  

(Uy($, x) uy(s’,x’)) = 2Y(x - x’)S{s -!’) 

(U,($, x) uz(s’,x’)) = 2Z(x - x’)S(s -s f ) .  

Then by using the well known formula for zero mean Gaussian variables (expe) = 
exp((f2)/2) we obtain 

where &j is the Kronecker delta. Note that this procedure can be extended in a 
straightforward manner to the case in which the statistical properties of the velocity field 
are determined by a two-point correlation tensor. 

The formula (19) is nothing but a path-integral solution of an ‘n-body’ interaction 
problem 

where the ‘n’-body Hamiltonian H. is 

Since the asymptotic behaviour of (+”) is determined by the largest eigenvalue of (20) 
E,. the long-time properties of a random flamz surface should relate to the properties of 
lim.,o E,. 

For 

Y(Xj - x j )  = YSij (21) 

equation ~(20) has been extensively studied in particular in the context of the replica 
method [20,21]. It is clear that this case corresponds to a simple renormalization of the 
Markstein diffusivity and hence the model considered here will have the same long-distance 
behaviour as the K!?Z model [14]. 

5. Small Markstein diffusivity limit 

It is clear from (20) and (21) that the influence of non-zero velocity fluctuations transverse 
to the reaction zone might be the same as that of diffusion term. It is reasonable therefore to 
consider the case of small Markstein diffusivity DL. In this case q ( t ,  T) can be expressed 
by the minimum of the action S. It follows from (13) that in the limit DL + 0, the 
dominant contribution to the space function integral comes from those realizations of the 
random process ~ ( s )  which minimize the action S [17,25-271. Therefore the functional 
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integral may be estimated by the steepest-descent method which gives an expression for 
%O, 7 )  = limD,+orp(t, r) 

(22) 

where a minimum has to be taken over all trajectories satisfying the boundary conditions (8). 
If we assume the initial condition for q(t, T )  to be zero, then according to (11) we may 

2 .  
PL 

pdt, 7 )  = -7 minSIv(s, TW),  ~ ( ~ 1 1  

where T, = T&) is a solution of the Euler-Lagrange equation associated with the 
action (11) 

with the conditions (8) . 

nonlinear first-order differential equation of Hamilton-Jacobi type 
It is also clear that the flame configuration p&, T )  may be found as a solution of a 

- + H[p*. V,(P*l = 0 
at 

w = V , ( t , T ) . V , c p , - - ( V , p * ) 2 - u , ( f , T ) .  2 (26) 

( 2 3  

where H is the Legendre transformation of the Lagrangian (12) multiplied by - 2 / u ~  

What we have seen here is that the constant laminar buming velocity assumption has a 
very natural interpretation in terms of the path integral. In the semiclassical approximation, 
when 

$ -exp -- ( m;Ls) 

the curvature has no effect on the flame front position p. 

6. Turbulent burning velocity 

Now we turn to the problem of the turbulent burning velocity UT which is the overall 
propagation rate of a flame in a random flow. Since the flame front is assumed to be thin, 
the enhancement of the burning rate by a random velocity field must be entirely owing to 
the increase in the flame surface. Therefore UT can be expressed in terms of the measure 
of the interface roughness ((V,(o)') 1.51 

UT = (1 + f((Vr$')2)) (28) 
where angular brackets denote the ensemble averaging. From (13), it follows that the 
gradient Vrp may be written as 

Note that this formula has similar mathematical structure to the Hopf-Cole solution of the 
Burgers equation 1281. Substitution of (29) into (28) gives an expression for UT which, 
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however, would be too general to work with. But in the limit DL + 0, an  approximate 
solution of (29) is V,y? % (2/u!)V,S(~.(s)) and, therefore, 

where of course L is a function of s along T&). This expression may be considered as the 
generalization of the well known Clavin-Williams formula [29]. By using (24), the formula 
for the turbulent huming velocity UT may be rewritten in terms of 'generalized momenta' 
aLiai. as 

In particular, when v, = 0, it follows from (IZ), (24), (31) that 

where T = ~ ( s ,  t ,  T) is a solution of the Newton equation 

d2r  
ds2 
- = -U$ V,u,(s, T ( S ) )  0 c s c f ' 

with the boundary conditions (8). 
To find an average value of the 'kinetic energy' along the Lagrangian trajectory ~ ( s )  in 

(32) and hence UT. it is necessery to specify a random velocity field U, that plays the role 
of a potential field. It would be interesting to use (30) to derive the $power dependence 
of UT on the ratio of the RMS velocity fluctuation, u R M S ,  to the laminar flame velocity, U:, 
previously deduced by simple dimensional analysis [9] (see also [30]). 

7. Summary 

We have shown that the problem of flame propagation with curvature-dependent speed in a 
weak random flow field can be formulated in terms of a path integral. Even though we cannot 
evaluate such an integral analytically, a number of results have been obtained by considering 
the limit of small Markstein diffusivity when the path integral can m be estimated by the 
steepestdescent method. Also, the replica method has been applied to perfom the average 
of the logarithm of the path integral. It should be noted that powerful numerical methods 
exist to evaluate the functional integrals directly 131-331. Therefore, it might appear that 
the path integral (13) may be more useful numerically than the original formulation based 
on a stochastic  partial^ differential equation (4). A description of turbulent flames in terms 
of a path integral leads quite directly to an analogy between turbulent flame problems and 
those that occur in the physics of disordered media. Besides technical advantages, such 
a similarity may lead to a deeper understanding of a turbulent flamelet combustion. In 
particular, the results obtained in this paper are of direct relevance to the experiments on 
the spatial fluctuations of the flame contour in an SI-engine combustion chamber [34], 
since they provide a strategy for obtaining the universal characteristics of scale-invariant 
fluctuations of a flame surface. We have also derived the new expressions for the turbulent 
burning velocity, which is the overall propagation rate of a flame surface subject to random 
velocity field. 
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